Fungrim home page

Fungrim entry: 98688d

erf ⁣(z)=2zez2π1F1 ⁣(1,32,z2)\operatorname{erf}\!\left(z\right) = \frac{2 z {e}^{-{z}^{2}}}{\sqrt{\pi}} \,{}_1F_1\!\left(1, \frac{3}{2}, {z}^{2}\right)
Assumptions:zCz \in \mathbb{C}
\operatorname{erf}\!\left(z\right) = \frac{2 z {e}^{-{z}^{2}}}{\sqrt{\pi}} \,{}_1F_1\!\left(1, \frac{3}{2}, {z}^{2}\right)

z \in \mathbb{C}
Fungrim symbol Notation Short description
Erferf ⁣(z)\operatorname{erf}\!\left(z\right) Error function
Expez{e}^{z} Exponential function
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
ConstPiπ\pi The constant pi (3.14...)
Hypergeometric1F11F1 ⁣(a,b,z)\,{}_1F_1\!\left(a, b, z\right) Kummer confluent hypergeometric function
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Erf(z), Mul(Div(Mul(Mul(2, z), Exp(Neg(Pow(z, 2)))), Sqrt(ConstPi)), Hypergeometric1F1(1, Div(3, 2), Pow(z, 2))))),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 13:58:57.282983 UTC