Fungrim home page

Fungrim entry: 984d9c

y(z)+y ⁣(z)=0   where y ⁣(z)=c1sin ⁣(z)+c2cos ⁣(z)y''(z) + y\!\left(z\right) = 0\; \text{ where } y\!\left(z\right) = {c}_{1} \sin\!\left(z\right) + {c}_{2} \cos\!\left(z\right)
Assumptions:zCandc1Candc2Cz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, {c}_{1} \in \mathbb{C} \,\mathbin{\operatorname{and}}\, {c}_{2} \in \mathbb{C}
y''(z) + y\!\left(z\right) = 0\; \text{ where } y\!\left(z\right) = {c}_{1} \sin\!\left(z\right) + {c}_{2} \cos\!\left(z\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, {c}_{1} \in \mathbb{C} \,\mathbin{\operatorname{and}}\, {c}_{2} \in \mathbb{C}
Fungrim symbol Notation Short description
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
Sinsin ⁣(z)\sin\!\left(z\right) Sine
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Where(Equal(Add(Derivative(y(z), Tuple(z, z, 2)), y(z)), 0), Equal(y(z), Add(Mul(Subscript(c, 1), Sin(z)), Mul(Subscript(c, 2), Cos(z)))))),
    Variables(z, Subscript(c, 1), Subscript(c, 2)),
    Assumptions(And(Element(z, CC), Element(Subscript(c, 1), CC), Element(Subscript(c, 2), CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC