Fungrim home page

Fungrim entry: 9758ac

Λ=zero*x(0,1)[18+n=1nxn1(x)n]\Lambda = \mathop{\operatorname{zero*}\,}\limits_{x \in \left(0, 1\right)} \left[-\frac{1}{8} + \sum_{n=1}^{\infty} \frac{n {x}^{n}}{1 - {\left(-x\right)}^{n}}\right]
TeX:
\Lambda = \mathop{\operatorname{zero*}\,}\limits_{x \in \left(0, 1\right)} \left[-\frac{1}{8} + \sum_{n=1}^{\infty} \frac{n {x}^{n}}{1 - {\left(-x\right)}^{n}}\right]
Definitions:
Fungrim symbol Notation Short description
HalphenConstantΛ\Lambda Halphen's constant (one-ninth constant) 0.10765...
UniqueZerozero*xSf(x)\mathop{\operatorname{zero*}\,}\limits_{x \in S} f(x) Unique zero (root) of function
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
OpenInterval(a,b)\left(a, b\right) Open interval
Source code for this entry:
Entry(ID("9758ac"),
    Formula(Equal(HalphenConstant, UniqueZero(Add(Neg(Div(1, 8)), Sum(Div(Mul(n, Pow(x, n)), Sub(1, Pow(Neg(x), n))), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC