Fungrim home page

Fungrim entry: 95e9e4

θ3 ⁣(0,4i)=[1+21/42]θ3 ⁣(0,i)\theta_{3}\!\left(0 , 4 i\right) = \left[\frac{1 + {2}^{-1 / 4}}{2}\right] \theta_{3}\!\left(0 , i\right)
References:
  • https://doi.org/10.1016/j.jmaa.2003.12.009
TeX:
\theta_{3}\!\left(0 , 4 i\right) = \left[\frac{1 + {2}^{-1 / 4}}{2}\right] \theta_{3}\!\left(0 , i\right)
Definitions:
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Powab{a}^{b} Power
Source code for this entry:
Entry(ID("95e9e4"),
    Formula(Equal(JacobiTheta(3, 0, Mul(4, ConstI)), Mul(Brackets(Div(Add(1, Pow(2, Neg(Div(1, 4)))), 2)), JacobiTheta(3, 0, ConstI)))),
    References("https://doi.org/10.1016/j.jmaa.2003.12.009"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-22 15:43:45.410764 UTC