Fungrim home page

Fungrim entry: 9448f2

θ4 ⁣(0,τ)=η2 ⁣(12τ)η(τ)\theta_{4}\!\left(0 , \tau\right) = \frac{\eta^{2}\!\left(\frac{1}{2} \tau\right)}{\eta(\tau)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\theta_{4}\!\left(0 , \tau\right) = \frac{\eta^{2}\!\left(\frac{1}{2} \tau\right)}{\eta(\tau)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Powab{a}^{b} Power
DedekindEtaη(τ)\eta(\tau) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("9448f2"),
    Formula(Equal(JacobiTheta(4, 0, tau), Div(Pow(DedekindEta(Mul(Div(1, 2), tau)), 2), DedekindEta(tau)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC