Fungrim home page

Fungrim entry: 926b2c

zeroszCθ4 ⁣(z,τ)={m+(n+12)τ:mZandnZ}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \theta_{4}\!\left(z , \tau\right) = \left\{ m + \left(n + \frac{1}{2}\right) \tau : m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \right\}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \theta_{4}\!\left(z , \tau\right) = \left\{ m + \left(n + \frac{1}{2}\right) \tau : m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \right\}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("926b2c"),
    Formula(Equal(Zeros(JacobiTheta(4, z, tau), ForElement(z, CC)), Set(Add(m, Mul(Add(n, Div(1, 2)), tau)), For(Tuple(m, n)), And(Element(m, ZZ), Element(n, ZZ))))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC