Fungrim home page

Fungrim entry: 90b419

{λ ⁣(τ):τH}={λ ⁣(τ):τFλ}=C{0,1}\left\{ \lambda\!\left(\tau\right) : \tau \in \mathbb{H} \right\} = \left\{ \lambda\!\left(\tau\right) : \tau \in \mathcal{F}_{\lambda} \right\} = \mathbb{C} \setminus \left\{0, 1\right\}
\left\{ \lambda\!\left(\tau\right) : \tau \in \mathbb{H} \right\} = \left\{ \lambda\!\left(\tau\right) : \tau \in \mathcal{F}_{\lambda} \right\} = \mathbb{C} \setminus \left\{0, 1\right\}
Fungrim symbol Notation Short description
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
ModularLambdaFundamentalDomainFλ\mathcal{F}_{\lambda} Fundamental domain of the modular lambda function
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(SetBuilder(ModularLambda(tau), tau, Element(tau, HH)), SetBuilder(ModularLambda(tau), tau, Element(tau, ModularLambdaFundamentalDomain)), SetMinus(CC, Set(0, 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 14:14:26.267625 UTC