Fungrim home page

Fungrim entry: 903962

λ ⁣(τ)λ ⁣(τ)1=θ24 ⁣(0,τ)θ44 ⁣(0,τ)\frac{\lambda\!\left(\tau\right)}{\lambda\!\left(\tau\right) - 1} = -\frac{\theta_{2}^{4}\!\left(0, \tau\right)}{\theta_{4}^{4}\!\left(0, \tau\right)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\frac{\lambda\!\left(\tau\right)}{\lambda\!\left(\tau\right) - 1} = -\frac{\theta_{2}^{4}\!\left(0, \tau\right)}{\theta_{4}^{4}\!\left(0, \tau\right)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("903962"),
    Formula(Equal(Div(ModularLambda(tau), Sub(ModularLambda(tau), 1)), Neg(Div(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4))))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-16 21:17:18.797188 UTC