Fungrim home page

Fungrim entry: 8f51dd

nφ ⁣(mn1)n \mid \varphi\!\left({m}^{n} - 1\right)
Assumptions:mZ1andnZ1m \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 1}
TeX:
n \mid \varphi\!\left({m}^{n} - 1\right)

m \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
Totientφ(n)\varphi(n) Euler totient function
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("8f51dd"),
    Formula(Divides(n, Totient(Sub(Pow(m, n), 1)))),
    Variables(m, n),
    Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(n, ZZGreaterEqual(1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC