Fungrim home page

Fungrim entry: 8b5ddb

ζ(s) is holomorphic on sC{1}\zeta(s) \text{ is holomorphic on } s \in \mathbb{C} \setminus \left\{1\right\}
TeX:
\zeta(s) \text{ is holomorphic on } s \in \mathbb{C} \setminus \left\{1\right\}
Definitions:
Fungrim symbol Notation Short description
IsHolomorphicf(z) is holomorphic at z=cf(z) \text{ is holomorphic at } z = c Holomorphic predicate
RiemannZetaζ(s)\zeta(s) Riemann zeta function
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("8b5ddb"),
    Formula(IsHolomorphic(RiemannZeta(s), ForElement(s, SetMinus(CC, Set(1))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC