Fungrim home page

Fungrim entry: 8b5ddb

HolomorphicDomain ⁣(ζ ⁣(s),s,C{~})=C{1}\operatorname{HolomorphicDomain}\!\left(\zeta\!\left(s\right), s, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \mathbb{C} \setminus \left\{1\right\}
TeX:
\operatorname{HolomorphicDomain}\!\left(\zeta\!\left(s\right), s, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \mathbb{C} \setminus \left\{1\right\}
Definitions:
Fungrim symbol Notation Short description
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
CCC\mathbb{C} Complex numbers
UnsignedInfinity~{\tilde \infty} Unsigned infinity
Source code for this entry:
Entry(ID("8b5ddb"),
    Formula(Equal(HolomorphicDomain(RiemannZeta(s), s, Union(CC, Set(UnsignedInfinity))), SetMinus(CC, Set(1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC