Fungrim home page

Fungrim entry: 8b4f7f

Bn ⁣(x+1)=Bn ⁣(z)+nxn1B_{n}\!\left(x + 1\right) = B_{n}\!\left(z\right) + n {x}^{n - 1}
Assumptions:nZ0andxCn \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
TeX:
B_{n}\!\left(x + 1\right) = B_{n}\!\left(z\right) + n {x}^{n - 1}

n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
BernoulliPolynomialBn ⁣(z)B_{n}\!\left(z\right) Bernoulli polynomial
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("8b4f7f"),
    Formula(Equal(BernoulliPolynomial(n, Add(x, 1)), Add(BernoulliPolynomial(n, z), Mul(n, Pow(x, Sub(n, 1)))))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-25 15:30:03.056001 UTC