Fungrim home page

Fungrim entry: 8b2743

Table of gcd ⁣(n,k)\gcd\!\left(n, k\right) for 0n150 \le n \le 15 and 0k150 \le k \le 15
nn \ kk 0123456789101112131415
00123456789101112131415
11111111111111111
22121212121212121
33113113113113113
44121412141214121
55111151111511115
66123216123216123
77111111711111171
88121412181214121
99113113119113113
10101212521211012125
11111111111111111111
12121234161432112123
13131111111111111311
14141212127212121141
15151131531135131115
Table data: (n,k,y)\left(n, k, y\right) such that gcd ⁣(n,k)=y\gcd\!\left(n, k\right) = y
Definitions:
Fungrim symbol Notation Short description
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
Source code for this entry:
Entry(ID("8b2743"),
    Description("Table of", GCD(n, k), "for", LessEqual(0, n, 15), "and", LessEqual(0, k, 15)),
    Table(TableRelation(Tuple(n, k, y), Equal(GCD(n, k), y)), TableHeadings(Description(n, "\", k), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), TableColumnHeadings(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), List(Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), Tuple(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), Tuple(2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), Tuple(3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3), Tuple(4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1), Tuple(5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5), Tuple(6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3), Tuple(7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1), Tuple(8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1), Tuple(9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3), Tuple(10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5), Tuple(11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1), Tuple(12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3), Tuple(13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1), Tuple(14, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14, 1), Tuple(15, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 15))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-11 15:50:15.016492 UTC