Assumptions:
TeX:
\theta_{4}\!\left(z , \tau\right) = 1 + 2 \sum_{n=1}^{\infty} {\left(-1\right)}^{n} {q}^{{n}^{2}} \cos\!\left(2 n \pi z\right)\; \text{ where } q = {e}^{\pi i \tau}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Sum | Sum | |
| Pow | Power | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("8a34d1"),
Formula(Equal(JacobiTheta(4, z, tau), Where(Add(1, Mul(2, Sum(Mul(Mul(Pow(-1, n), Pow(q, Pow(n, 2))), Cos(Mul(Mul(Mul(2, n), Pi), z))), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))