Fungrim home page

Fungrim entry: 88168b

Wk ⁣(z)exp ⁣(Wk ⁣(z))=zW_{k}\!\left(z\right) \exp\!\left(W_{k}\!\left(z\right)\right) = z
Assumptions:(kZandzC{0})or(k=0andz=0)\left(k \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}\right) \,\mathbin{\operatorname{or}}\, \left(k = 0 \,\mathbin{\operatorname{and}}\, z = 0\right)
W_{k}\!\left(z\right) \exp\!\left(W_{k}\!\left(z\right)\right) = z

\left(k \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}\right) \,\mathbin{\operatorname{or}}\, \left(k = 0 \,\mathbin{\operatorname{and}}\, z = 0\right)
Fungrim symbol Notation Short description
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
Expez{e}^{z} Exponential function
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Mul(LambertW(k, z), Exp(LambertW(k, z))), z)),
    Variables(k, z),
    Assumptions(Or(And(Element(k, ZZ), Element(z, SetMinus(CC, Set(0)))), And(Equal(k, 0), Equal(z, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC