Fungrim home page

Fungrim entry: 86d68c

0θ46 ⁣(0,it)1+t2dt=16Gπ223\int_{0}^{\infty} \frac{\theta_{4}^{6}\!\left(0, i t\right)}{1 + {t}^{2}} \, dt = \frac{16 G}{{\pi}^{2}} - \frac{2}{3}
References:
  • https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty
TeX:
\int_{0}^{\infty} \frac{\theta_{4}^{6}\!\left(0, i t\right)}{1 + {t}^{2}} \, dt = \frac{16 G}{{\pi}^{2}} - \frac{2}{3}
Definitions:
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
ConstCatalanGG Catalan's constant
Piπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("86d68c"),
    Formula(Equal(Integral(Div(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 6), Add(1, Pow(t, 2))), For(t, 0, Infinity)), Sub(Div(Mul(16, ConstCatalan), Pow(Pi, 2)), Div(2, 3)))),
    References("https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC