Fungrim home page

Fungrim entry: 82373a

k=0nFk2=FnFn+1\sum_{k=0}^{n} F_{k}^{2} = F_{n} F_{n + 1}
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
\sum_{k=0}^{n} F_{k}^{2} = F_{n} F_{n + 1}

n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
FibonacciFnF_{n} Fibonacci number
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(Sum(Pow(Fibonacci(k), 2), For(k, 0, n)), Mul(Fibonacci(n), Fibonacci(Add(n, 1))))),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC