Fungrim home page

Fungrim entry: 81eec6

Iν ⁣(z)=(z2)ν0F1 ⁣(ν+1,z24)I_{\nu}\!\left(z\right) = {\left(\frac{z}{2}\right)}^{\nu} \,{}_0{\textbf F}_1\!\left(\nu + 1, \frac{{z}^{2}}{4}\right)
Assumptions:νZ0  and  zC\nu \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Alternative assumptions:νC  and  zC{0}\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
I_{\nu}\!\left(z\right) = {\left(\frac{z}{2}\right)}^{\nu} \,{}_0{\textbf F}_1\!\left(\nu + 1, \frac{{z}^{2}}{4}\right)

\nu \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}

\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol Notation Short description
BesselIIν ⁣(z)I_{\nu}\!\left(z\right) Modified Bessel function of the first kind
Powab{a}^{b} Power
Hypergeometric0F1Regularized0F1 ⁣(a,z)\,{}_0{\textbf F}_1\!\left(a, z\right) Regularized confluent hypergeometric limit function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(BesselI(nu, z), Mul(Pow(Div(z, 2), nu), Hypergeometric0F1Regularized(Add(nu, 1), Div(Pow(z, 2), 4))))),
    Variables(nu, z),
    Assumptions(And(Element(nu, ZZGreaterEqual(0)), Element(z, CC)), And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC