Fungrim home page

Fungrim entry: 818008

γ=1k=2ζ(k)1k\gamma = 1 - \sum_{k=2}^{\infty} \frac{\zeta(k) - 1}{k}
\gamma = 1 - \sum_{k=2}^{\infty} \frac{\zeta(k) - 1}{k}
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
Sumnf(n)\sum_{n} f(n) Sum
RiemannZetaζ(s)\zeta(s) Riemann zeta function
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(ConstGamma, Sub(1, Sum(Div(Sub(RiemannZeta(k), 1), k), For(k, 2, Infinity))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC