Fungrim home page

Fungrim entry: 812707

ea+b=eaeb{e}^{a + b} = {e}^{a} {e}^{b}
Assumptions:aCandbCa \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
TeX:
{e}^{a + b} = {e}^{a} {e}^{b}

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Expez{e}^{z} Exponential function
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("812707"),
    Formula(Equal(Exp(Add(a, b)), Mul(Exp(a), Exp(b)))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC