Fungrim home page

Fungrim entry: 7cb17f

Table of ζ ⁣(2n)\zeta\!\left(2 n\right) for 1n201 \le n \le 20
nn ζ(n)\zeta(n)
216π2\frac{1}{6} {\pi}^{2}
4190π4\frac{1}{90} {\pi}^{4}
61945π6\frac{1}{945} {\pi}^{6}
819450π8\frac{1}{9450} {\pi}^{8}
10193555π10\frac{1}{93555} {\pi}^{10}
12691638512875π12\frac{691}{638512875} {\pi}^{12}
14218243225π14\frac{2}{18243225} {\pi}^{14}
163617325641566250π16\frac{3617}{325641566250} {\pi}^{16}
184386738979295480125π18\frac{43867}{38979295480125} {\pi}^{18}
201746111531329465290625π20\frac{174611}{1531329465290625} {\pi}^{20}
nn ζ(n)\zeta(n)
2215536613447856940643125π22\frac{155366}{13447856940643125} {\pi}^{22}
24236364091201919571963756521875π24\frac{236364091}{201919571963756521875} {\pi}^{24}
26131586211094481976030578125π26\frac{1315862}{11094481976030578125} {\pi}^{26}
286785560294564653660170076273671875π28\frac{6785560294}{564653660170076273671875} {\pi}^{28}
3068926730208045660878804669082674070015625π30\frac{6892673020804}{5660878804669082674070015625} {\pi}^{30}
32770932104121762490220571022341207266406250π32\frac{7709321041217}{62490220571022341207266406250} {\pi}^{32}
3415162869755112130454581433748587292890625π34\frac{151628697551}{12130454581433748587292890625} {\pi}^{34}
362631527155305347737320777977561866588586487628662044921875π36\frac{26315271553053477373}{20777977561866588586487628662044921875} {\pi}^{36}
383084204119833222403467618492375776343276883984375π38\frac{308420411983322}{2403467618492375776343276883984375} {\pi}^{38}
4026108271849644912205120080431172289638826798401128390556640625π40\frac{261082718496449122051}{20080431172289638826798401128390556640625} {\pi}^{40}
Definitions:
Fungrim symbol Notation Short description
RiemannZetaζ(s)\zeta(s) Riemann zeta function
Powab{a}^{b} Power
ConstPiπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("7cb17f"),
    Description("Table of", RiemannZeta(Mul(2, n)), "for", LessEqual(1, n, 20)),
    Table(Var(n), TableValueHeadings(n, RiemannZeta(n)), TableSplit(2), List(Tuple(2, Mul(Div(1, 6), Pow(ConstPi, 2))), Tuple(4, Mul(Div(1, 90), Pow(ConstPi, 4))), Tuple(6, Mul(Div(1, 945), Pow(ConstPi, 6))), Tuple(8, Mul(Div(1, 9450), Pow(ConstPi, 8))), Tuple(10, Mul(Div(1, 93555), Pow(ConstPi, 10))), Tuple(12, Mul(Div(691, 638512875), Pow(ConstPi, 12))), Tuple(14, Mul(Div(2, 18243225), Pow(ConstPi, 14))), Tuple(16, Mul(Div(3617, 325641566250), Pow(ConstPi, 16))), Tuple(18, Mul(Div(43867, 38979295480125), Pow(ConstPi, 18))), Tuple(20, Mul(Div(174611, 1531329465290625), Pow(ConstPi, 20))), Tuple(22, Mul(Div(155366, 13447856940643125), Pow(ConstPi, 22))), Tuple(24, Mul(Div(236364091, 201919571963756521875), Pow(ConstPi, 24))), Tuple(26, Mul(Div(1315862, 11094481976030578125), Pow(ConstPi, 26))), Tuple(28, Mul(Div(6785560294, 564653660170076273671875), Pow(ConstPi, 28))), Tuple(30, Mul(Div(6892673020804, 5660878804669082674070015625), Pow(ConstPi, 30))), Tuple(32, Mul(Div(7709321041217, 62490220571022341207266406250), Pow(ConstPi, 32))), Tuple(34, Mul(Div(151628697551, 12130454581433748587292890625), Pow(ConstPi, 34))), Tuple(36, Mul(Div(26315271553053477373, 20777977561866588586487628662044921875), Pow(ConstPi, 36))), Tuple(38, Mul(Div(308420411983322, 2403467618492375776343276883984375), Pow(ConstPi, 38))), Tuple(40, Mul(Div(261082718496449122051, 20080431172289638826798401128390556640625), Pow(ConstPi, 40))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC