Fungrim home page

Fungrim entry: 778fa2

Symbol: StirlingCycle [nk]\left[{n \atop k}\right] Unsigned Stirling number of the first kind
Domain Codomain
nZ0andkZ0n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z}_{\ge 0} [nk]Z0\left[{n \atop k}\right] \in \mathbb{Z}_{\ge 0}
Table data: (P,Q)\left(P, Q\right) such that (P)    (Q)\left(P\right) \implies \left(Q\right)
Definitions:
Fungrim symbol Notation Short description
StirlingCycle[nk]\left[{n \atop k}\right] Unsigned Stirling number of the first kind
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("778fa2"),
    SymbolDefinition(StirlingCycle, StirlingCycle(n, k), "Unsigned Stirling number of the first kind"),
    Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZGreaterEqual(0))), Element(StirlingCycle(n, k), ZZGreaterEqual(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-11 15:50:15.016492 UTC