Fungrim entry: 72b6ca

$W'_{k}\!\left(z\right) = \frac{W_{k}\!\left(z\right)}{z \left(1 + W_{k}\!\left(z\right)\right)}$
Assumptions:$\left(k \in \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0, -{e}^{-1}\right\}\right) \,\mathbin{\operatorname{or}}\, \left(k \in \mathbb{Z} \setminus \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}\right)$
TeX:
W'_{k}\!\left(z\right) = \frac{W_{k}\!\left(z\right)}{z \left(1 + W_{k}\!\left(z\right)\right)}

\left(k \in \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0, -{e}^{-1}\right\}\right) \,\mathbin{\operatorname{or}}\, \left(k \in \mathbb{Z} \setminus \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}\right)
Definitions:
Fungrim symbol Notation Short description
LambertW$W_{k}\!\left(z\right)$ Lambert W-function
CC$\mathbb{C}$ Complex numbers
Exp${e}^{z}$ Exponential function
ZZ$\mathbb{Z}$ Integers
Source code for this entry:
Entry(ID("72b6ca"),
Formula(Equal(LambertW(k, z, 1), Div(LambertW(k, z), Mul(z, Add(1, LambertW(k, z, 0)))))),
Variables(k, z),
Assumptions(Or(And(Element(k, Set(0, 1)), Element(z, SetMinus(CC, Set(0, Neg(Exp(-1)))))), And(Element(k, SetMinus(ZZ, Set(0, 1))), Element(z, SetMinus(CC, Set(0)))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC