Fungrim home page

Fungrim entry: 729b70

Re ⁣(sin ⁣(x+iy))=sin(x)cosh(y)\operatorname{Re}\!\left(\sin\!\left(x + i y\right)\right) = \sin(x) \cosh(y)
Assumptions:xRandyRx \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
\operatorname{Re}\!\left(\sin\!\left(x + i y\right)\right) = \sin(x) \cosh(y)

x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
Fungrim symbol Notation Short description
ReRe(z)\operatorname{Re}(z) Real part
Sinsin(z)\sin(z) Sine
ConstIii Imaginary unit
RRR\mathbb{R} Real numbers
Source code for this entry:
    Formula(Equal(Re(Sin(Add(x, Mul(ConstI, y)))), Mul(Sin(x), Cosh(y)))),
    Variables(x, y),
    Assumptions(And(Element(x, RR), Element(y, RR))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC