Fungrim home page

Fungrim entry: 7131cd

θ4 ⁣(2z,τ)=θ34 ⁣(z,τ)θ24 ⁣(z,τ)θ43 ⁣(0,τ)\theta_{4}\!\left(2 z , \tau\right) = \frac{\theta_{3}^{4}\!\left(z, \tau\right) - \theta_{2}^{4}\!\left(z, \tau\right)}{\theta_{4}^{3}\!\left(0, \tau\right)}
Assumptions:zCandτHz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
\theta_{4}\!\left(2 z , \tau\right) = \frac{\theta_{3}^{4}\!\left(z, \tau\right) - \theta_{2}^{4}\!\left(z, \tau\right)}{\theta_{4}^{3}\!\left(0, \tau\right)}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(JacobiTheta(4, Mul(2, z), tau), Div(Sub(Pow(JacobiTheta(3, z, tau), 4), Pow(JacobiTheta(2, z, tau), 4)), Pow(JacobiTheta(4, 0, tau), 3)))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC