Fungrim home page

Fungrim entry: 70eb98

Symbol: ModularJ j(τ)j(\tau) Modular j-invariant
The modular j-invariant j(τ)j(\tau) is a function of one variable τ\tau in the upper half-plane.
Domain Codomain
τH\tau \in \mathbb{H} j(τ)Cj(\tau) \in \mathbb{C}
Table data: (P,Q)\left(P, Q\right) such that (P)    (Q)\left(P\right) \implies \left(Q\right)
Definitions:
Fungrim symbol Notation Short description
ModularJj(τ)j(\tau) Modular j-invariant
HHH\mathbb{H} Upper complex half-plane
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("70eb98"),
    SymbolDefinition(ModularJ, ModularJ(tau), "Modular j-invariant"),
    Description("The modular j-invariant", ModularJ(tau), "is a function of one variable", tau, "in the upper half-plane."),
    Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(Tuple(Element(tau, HH), Element(ModularJ(tau), CC)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC