$\theta_{3}^{2}\!\left(0, \tau\right) \theta_{3}^{2}\!\left(z, \tau\right) = \theta_{4}^{2}\!\left(0, \tau\right) \theta_{4}^{2}\!\left(z, \tau\right) + \theta_{2}^{2}\!\left(0, \tau\right) \theta_{2}^{2}\!\left(z, \tau\right)$
Assumptions:$z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}$
TeX:
\theta_{3}^{2}\!\left(0, \tau\right) \theta_{3}^{2}\!\left(z, \tau\right) = \theta_{4}^{2}\!\left(0, \tau\right) \theta_{4}^{2}\!\left(z, \tau\right) + \theta_{2}^{2}\!\left(0, \tau\right) \theta_{2}^{2}\!\left(z, \tau\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
Pow${a}^{b}$ Power
JacobiTheta$\theta_{j}\!\left(z , \tau\right)$ Jacobi theta function
CC$\mathbb{C}$ Complex numbers
HH$\mathbb{H}$ Upper complex half-plane
Source code for this entry:
Entry(ID("6fad93"),
Formula(Equal(Mul(Pow(JacobiTheta(3, 0, tau), 2), Pow(JacobiTheta(3, z, tau), 2)), Add(Mul(Pow(JacobiTheta(4, 0, tau), 2), Pow(JacobiTheta(4, z, tau), 2)), Mul(Pow(JacobiTheta(2, 0, tau), 2), Pow(JacobiTheta(2, z, tau), 2))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC