Assumptions:
TeX:
U\!\left(a, b, z\right) = \frac{\Gamma\!\left(1 - b\right)}{\Gamma\!\left(a - b + 1\right)} \,{}_1F_1\!\left(a, b, z\right) + \frac{\Gamma\!\left(b - 1\right)}{\Gamma(a)} {z}^{1 - b} \,{}_1F_1\!\left(a - b + 1, 2 - b, z\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; b \notin \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HypergeometricU | Tricomi confluent hypergeometric function | |
| Gamma | Gamma function | |
| Hypergeometric1F1 | Kummer confluent hypergeometric function | |
| Pow | Power | |
| CC | Complex numbers | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("6cf802"),
Formula(Equal(HypergeometricU(a, b, z), Add(Mul(Div(Gamma(Sub(1, b)), Gamma(Add(Sub(a, b), 1))), Hypergeometric1F1(a, b, z)), Mul(Mul(Div(Gamma(Sub(b, 1)), Gamma(a)), Pow(z, Sub(1, b))), Hypergeometric1F1(Add(Sub(a, b), 1), Sub(2, b), z))))),
Variables(a, b, z),
Assumptions(And(Element(a, CC), Element(b, CC), Element(z, CC), NotEqual(z, 0), NotElement(b, ZZ))))