Fungrim home page

Fungrim entry: 6c2b31

zn+1=znz{z}^{n + 1} = {z}^{n} z
Assumptions:zCandnZ0z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0}
Alternative assumptions:zRandRRingsandnZ0z \in R \,\mathbin{\operatorname{and}}\, R \in \operatorname{Rings} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0}
{z}^{n + 1} = {z}^{n} z

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0}

z \in R \,\mathbin{\operatorname{and}}\, R \in \operatorname{Rings} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Mul(Equal(Pow(z, Add(n, 1)), Pow(z, n)), z)),
    Variables(z, n),
    Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0))), And(Element(z, R), Element(R, Rings), Element(n, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC