Fungrim home page

Fungrim entry: 6b9935

η ⁣(i)=limτi[η ⁣(τ)]=0\eta\!\left(i \infty\right) = \lim_{\tau \to i \infty} \left[ \eta\!\left(\tau\right) \right] = 0
\eta\!\left(i \infty\right) = \lim_{\tau \to i \infty} \left[ \eta\!\left(\tau\right) \right] = 0
Fungrim symbol Notation Short description
DedekindEtaη ⁣(τ)\eta\!\left(\tau\right) Dedekind eta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
ComplexLimitlimzaf ⁣(z)\lim_{z \to a} f\!\left(z\right) Limiting value, complex variable
Source code for this entry:
    Formula(Equal(DedekindEta(Mul(ConstI, Infinity)), ComplexLimit(DedekindEta(tau), tau, Mul(ConstI, Infinity)), 0)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-19 14:38:23.809000 UTC