Fungrim home page

Fungrim entry: 6b9935

η ⁣(i)=limτiη(τ)=0\eta\!\left(i \infty\right) = \lim_{\tau \to i \infty} \eta(\tau) = 0
\eta\!\left(i \infty\right) = \lim_{\tau \to i \infty} \eta(\tau) = 0
Fungrim symbol Notation Short description
DedekindEtaη(τ)\eta(\tau) Dedekind eta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
ComplexLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, complex variable
Source code for this entry:
    Formula(Equal(DedekindEta(Mul(ConstI, Infinity)), ComplexLimit(DedekindEta(tau), For(tau, Mul(ConstI, Infinity))), 0)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC