Fungrim home page

Fungrim entry: 69eb9b

 ⁣(z,τ) is holomorphic on zCΛ(1,τ)\wp\!\left(z, \tau\right) \text{ is holomorphic on } z \in \mathbb{C} \setminus \Lambda_{(1, \tau)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\wp\!\left(z, \tau\right) \text{ is holomorphic on } z \in \mathbb{C} \setminus \Lambda_{(1, \tau)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
IsHolomorphicf(z) is holomorphic at z=cf(z) \text{ is holomorphic at } z = c Holomorphic predicate
WeierstrassP ⁣(z,τ)\wp\!\left(z, \tau\right) Weierstrass elliptic function
CCC\mathbb{C} Complex numbers
LatticeΛ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("69eb9b"),
    Formula(IsHolomorphic(WeierstrassP(z, tau), ForElement(z, SetMinus(CC, Lattice(1, tau))))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC