Fungrim home page

Fungrim entry: 6880d0

gcd ⁣(a,b)=max{d:dZ1  and  da  and  db}\gcd\!\left(a, b\right) = \max \left\{ d : d \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; d \mid a \;\mathbin{\operatorname{and}}\; d \mid b \right\}
Assumptions:aZ  and  bZ  and  (a0  or  b0)a \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; \left(a \ne 0 \;\mathbin{\operatorname{or}}\; b \ne 0\right)
TeX:
\gcd\!\left(a, b\right) = \max \left\{ d : d \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; d \mid a \;\mathbin{\operatorname{and}}\; d \mid b \right\}

a \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; \left(a \ne 0 \;\mathbin{\operatorname{or}}\; b \ne 0\right)
Definitions:
Fungrim symbol Notation Short description
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
MaximummaxxSf(x)\mathop{\max}\limits_{x \in S} f(x) Maximum value of a set or function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("6880d0"),
    Formula(Equal(GCD(a, b), Maximum(Set(d, For(d), And(Element(d, ZZGreaterEqual(1)), Divides(d, a), Divides(d, b)))))),
    Variables(a, b),
    Assumptions(And(Element(a, ZZ), Element(b, ZZ), Or(NotEqual(a, 0), NotEqual(b, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC