Fungrim home page

Fungrim entry: 663d9c

gcd ⁣(a,b)ax+by\gcd\!\left(a, b\right) \mid a x + b y
Assumptions:aZ  and  bZ  and  xZ  and  yZ  and  (a0  or  b0)a \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; y \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; \left(a \ne 0 \;\mathbin{\operatorname{or}}\; b \ne 0\right)
\gcd\!\left(a, b\right) \mid a x + b y

a \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; y \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; \left(a \ne 0 \;\mathbin{\operatorname{or}}\; b \ne 0\right)
Fungrim symbol Notation Short description
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Divides(GCD(a, b), Add(Mul(a, x), Mul(b, y)))),
    Variables(a, b, x, y),
    Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(x, ZZ), Element(y, ZZ), Or(NotEqual(a, 0), NotEqual(b, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC