Fungrim home page

Fungrim entry: 65fa9f

(RH)    (log ⁣(g(n))<f(n)   for all nZ1   where f(y)=solution*x(1,)[li(x)=y])\left(\operatorname{RH}\right) \iff \left(\log\!\left(g(n)\right) < \sqrt{f(n)} \;\text{ for all } n \in \mathbb{Z}_{\ge 1}\; \text{ where } f(y) = \mathop{\operatorname{solution*}\,}\limits_{x \in \left(1, \infty\right)} \left[\operatorname{li}(x) = y\right]\right)
References:
  • Marc Deleglise, Jean-Louis Nicolas, The Landau function and the Riemann Hypothesis, https://arxiv.org/abs/1907.07664
TeX:
\left(\operatorname{RH}\right) \iff \left(\log\!\left(g(n)\right) < \sqrt{f(n)} \;\text{ for all } n \in \mathbb{Z}_{\ge 1}\; \text{ where } f(y) = \mathop{\operatorname{solution*}\,}\limits_{x \in \left(1, \infty\right)} \left[\operatorname{li}(x) = y\right]\right)
Definitions:
Fungrim symbol Notation Short description
RiemannHypothesisRH\operatorname{RH} Riemann hypothesis
Loglog(z)\log(z) Natural logarithm
LandauGg(n)g(n) Landau's function
Sqrtz\sqrt{z} Principal square root
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
UniqueSolutionsolution*xSQ(x)\mathop{\operatorname{solution*}\,}\limits_{x \in S} Q(x) Unique solution
LogIntegralli(z)\operatorname{li}(z) Logarithmic integral
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("65fa9f"),
    Formula(Equivalent(RiemannHypothesis, Where(All(Less(Log(LandauG(n)), Sqrt(f(n))), ForElement(n, ZZGreaterEqual(1))), Equal(f(y), UniqueSolution(Brackets(Equal(LogIntegral(x), y)), ForElement(x, OpenInterval(1, Infinity))))))),
    References("Marc Deleglise, Jean-Louis Nicolas, The Landau function and the Riemann Hypothesis, https://arxiv.org/abs/1907.07664"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC