Fungrim home page

Fungrim entry: 659ce8

2F1 ⁣(a,b,c,1)=Γ ⁣(c)Γ ⁣(cab)Γ ⁣(ca)Γ ⁣(cb)\,{}_2F_1\!\left(a, b, c, 1\right) = \frac{\Gamma\!\left(c\right) \Gamma\!\left(c - a - b\right)}{\Gamma\!\left(c - a\right) \Gamma\!\left(c - b\right)}
Assumptions:aCandbCandcC{0,1,}andRe ⁣(cab)>0a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \mathbb{C} \setminus \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(c - a - b\right) > 0
\,{}_2F_1\!\left(a, b, c, 1\right) = \frac{\Gamma\!\left(c\right) \Gamma\!\left(c - a - b\right)}{\Gamma\!\left(c - a\right) \Gamma\!\left(c - b\right)}

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \mathbb{C} \setminus \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(c - a - b\right) > 0
Fungrim symbol Notation Short description
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
GammaFunctionΓ ⁣(z)\Gamma\!\left(z\right) Gamma function
CCC\mathbb{C} Complex numbers
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Source code for this entry:
    Formula(Equal(Hypergeometric2F1(a, b, c, 1), Div(Mul(GammaFunction(c), GammaFunction(Sub(Sub(c, a), b))), Mul(GammaFunction(Sub(c, a)), GammaFunction(Sub(c, b)))))),
    Variables(a, b, c),
    Assumptions(And(Element(a, CC), Element(b, CC), Element(c, SetMinus(CC, ZZLessEqual(0))), Greater(Re(Sub(Sub(c, a), b)), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 11:00:55.020619 UTC