# Fungrim entry: 62ffb3

$\eta\!\left(6 i\right) = \frac{1}{{6}^{3 / 8}} {\left(\frac{5 - \sqrt{3}}{2} - \frac{{3}^{3 / 4}}{\sqrt{2}}\right)}^{1 / 6} \eta(i)$
References:
• https://math.stackexchange.com/questions/1334684/what-is-the-exact-value-of-eta6i/1334940
TeX:
\eta\!\left(6 i\right) = \frac{1}{{6}^{3 / 8}} {\left(\frac{5 - \sqrt{3}}{2} - \frac{{3}^{3 / 4}}{\sqrt{2}}\right)}^{1 / 6} \eta(i)
Definitions:
Fungrim symbol Notation Short description
DedekindEta$\eta(\tau)$ Dedekind eta function
ConstI$i$ Imaginary unit
Pow${a}^{b}$ Power
Sqrt$\sqrt{z}$ Principal square root
Source code for this entry:
Entry(ID("62ffb3"),
Formula(Equal(DedekindEta(Mul(6, ConstI)), Mul(Mul(Div(1, Pow(6, Div(3, 8))), Pow(Sub(Div(Sub(5, Sqrt(3)), 2), Div(Pow(3, Div(3, 4)), Sqrt(2))), Div(1, 6))), DedekindEta(ConstI)))),
References("https://math.stackexchange.com/questions/1334684/what-is-the-exact-value-of-eta6i/1334940"))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC