Fungrim home page

Fungrim entry: 60c2ec

ρn=ρn\rho_{-n} = \overline{\rho_{n}}
Assumptions:nZandn0n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0
TeX:
\rho_{-n} = \overline{\rho_{n}}

n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0
Definitions:
Fungrim symbol Notation Short description
RiemannZetaZeroρn\rho_{n} Nontrivial zero of the Riemann zeta function
Conjugatez\overline{z} Complex conjugate
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("60c2ec"),
    Formula(Equal(RiemannZetaZero(Neg(n)), Conjugate(RiemannZetaZero(n)))),
    Variables(n),
    Assumptions(And(Element(n, ZZ), Unequal(n, 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC