Assumptions:
TeX:
U_{2 n}\!\left(x\right) = T_{n}\!\left(2 {x}^{2} - 1\right) + U_{n - 1}\!\left(2 {x}^{2} - 1\right)
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevU | Chebyshev polynomial of the second kind | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Pow | Power | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("5f09f4"),
Formula(Equal(ChebyshevU(Mul(2, n), x), Add(ChebyshevT(n, Sub(Mul(2, Pow(x, 2)), 1)), ChebyshevU(Sub(n, 1), Sub(Mul(2, Pow(x, 2)), 1))))),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, CC))))