Fungrim home page

Fungrim entry: 5dd24a

λ ⁣(τ)=16η8 ⁣(τ2)η16 ⁣(2τ)η24 ⁣(τ)\lambda\!\left(\tau\right) = 16 \frac{\eta^{8}\!\left(\frac{\tau}{2}\right) \eta^{16}\!\left(2 \tau\right)}{\eta^{24}\!\left(\tau\right)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(\tau\right) = 16 \frac{\eta^{8}\!\left(\frac{\tau}{2}\right) \eta^{16}\!\left(2 \tau\right)}{\eta^{24}\!\left(\tau\right)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
Powab{a}^{b} Power
DedekindEtaη ⁣(τ)\eta\!\left(\tau\right) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("5dd24a"),
    Formula(Equal(ModularLambda(tau), Mul(16, Div(Mul(Pow(DedekindEta(Div(tau, 2)), 8), Pow(DedekindEta(Mul(2, tau)), 16)), Pow(DedekindEta(tau), 24))))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-16 21:17:18.797188 UTC