Fungrim home page

Fungrim entry: 59f8e1

θ1 ⁣(z,τ)=θ1 ⁣(z,τ)\theta_{1}\!\left(-z , \tau\right) = -\theta_{1}\!\left(z , \tau\right)
Assumptions:zCandτHz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
TeX:
\theta_{1}\!\left(-z , \tau\right) = -\theta_{1}\!\left(z , \tau\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("59f8e1"),
    Formula(Equal(JacobiTheta(1, Neg(z), tau), Neg(JacobiTheta(1, z, tau)))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC