Fungrim home page

Fungrim entry: 5679f2

Y1/2 ⁣(z)=(2zπ)1/2sin(z)zY_{-1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\sin(z)}{z}
Assumptions:zC{0}z \in \mathbb{C} \setminus \left\{0\right\}
Y_{-1 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \frac{\sin(z)}{z}

z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol Notation Short description
BesselYYν ⁣(z)Y_{\nu}\!\left(z\right) Bessel function of the second kind
Powab{a}^{b} Power
Piπ\pi The constant pi (3.14...)
Sinsin(z)\sin(z) Sine
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(BesselY(Neg(Div(1, 2)), z), Mul(Pow(Div(Mul(2, z), Pi), Div(1, 2)), Div(Sin(z), z)))),
    Assumptions(Element(z, SetMinus(CC, Set(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC