# Fungrim entry: 542cf7

$\mathrm{B}\!\left(a, b\right) = \int_{0}^{1} {t}^{a - 1} {\left(1 - t\right)}^{b - 1} \, dt$
Assumptions:$a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0$
TeX:
\mathrm{B}\!\left(a, b\right) = \int_{0}^{1} {t}^{a - 1} {\left(1 - t\right)}^{b - 1} \, dt

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0
Definitions:
Fungrim symbol Notation Short description
BetaFunction$\mathrm{B}\!\left(a, b\right)$ Beta function
Integral$\int_{a}^{b} f(x) \, dx$ Integral
Pow${a}^{b}$ Power
CC$\mathbb{C}$ Complex numbers
Re$\operatorname{Re}(z)$ Real part
Source code for this entry:
Entry(ID("542cf7"),
Formula(Equal(BetaFunction(a, b), Integral(Mul(Pow(t, Sub(a, 1)), Pow(Sub(1, t), Sub(b, 1))), For(t, 0, 1)))),
Variables(a, b),
Assumptions(And(Element(a, CC), Element(b, CC), Greater(Re(a), 0), Greater(Re(b), 0))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-03-29 16:01:42.585089 UTC