Fungrim home page

Fungrim entry: 51b241

y(z)zy ⁣(z)=0   where y ⁣(z)=CAi ⁣(z)+DBi ⁣(z)y''(z) - z y\!\left(z\right) = 0\; \text{ where } y\!\left(z\right) = C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)
Assumptions:zCandCCandDCz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C}
y''(z) - z y\!\left(z\right) = 0\; \text{ where } y\!\left(z\right) = C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C}
Fungrim symbol Notation Short description
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
AiryAiAi ⁣(z)\operatorname{Ai}\!\left(z\right) Airy function of the first kind
AiryBiBi ⁣(z)\operatorname{Bi}\!\left(z\right) Airy function of the second kind
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Where(Equal(Sub(Derivative(y(z), Tuple(z, z, 2)), Mul(z, y(z))), 0), Equal(y(z), Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z)))))),
    Variables(z, C, D),
    Assumptions(And(Element(z, CC), Element(C, CC), Element(D, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC