Fungrim home page

Fungrim entry: 508e2c

sin ⁣(ab)=sin(a)cos(b)cos(a)sin(b)\sin\!\left(a - b\right) = \sin(a) \cos(b) - \cos(a) \sin(b)
Assumptions:aCandbCa \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
\sin\!\left(a - b\right) = \sin(a) \cos(b) - \cos(a) \sin(b)

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
Fungrim symbol Notation Short description
Sinsin(z)\sin(z) Sine
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Sin(Sub(a, b)), Sub(Mul(Sin(a), Cos(b)), Mul(Cos(a), Sin(b))))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC