Fungrim home page

Fungrim entry: 4e7120

(nk)nnkk(nk)nk{n \choose k} \le \frac{{n}^{n}}{{k}^{k} {\left(n - k\right)}^{n - k}}
Assumptions:nZ0andk{0,1,n}n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, k \in \{0, 1, \ldots n\}
TeX:
{n \choose k} \le \frac{{n}^{n}}{{k}^{k} {\left(n - k\right)}^{n - k}}

n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, k \in \{0, 1, \ldots n\}
Definitions:
Fungrim symbol Notation Short description
Binomial(nk){n \choose k} Binomial coefficient
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
ZZBetween{a,a+1,b}\{a, a + 1, \ldots b\} Integers between a and b inclusive
Source code for this entry:
Entry(ID("4e7120"),
    Formula(LessEqual(Binomial(n, k), Div(Pow(n, n), Mul(Pow(k, k), Pow(Sub(n, k), Sub(n, k)))))),
    Variables(n, k),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZBetween(0, n)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC