This mapping is one-to-one.
References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118.
TeX:
\left\{ \lambda(\tau) : \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, \operatorname{Re}(\tau) = -1 \right\} = \left(-\infty, 0\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ModularLambda | Modular lambda function | |
| HH | Upper complex half-plane | |
| Re | Real part | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("4b20ab"),
Formula(Equal(Set(ModularLambda(tau), ForElement(tau, HH), Equal(Re(tau), -1)), OpenInterval(Neg(Infinity), 0))),
Description("This mapping is one-to-one."),
References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118."))