Fungrim home page

Fungrim entry: 4644c0

γ=limnk=1n1klog ⁣(n)\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \log\!\left(n\right)
\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \log\!\left(n\right)
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
SequenceLimitlimnaf ⁣(n)\lim_{n \to a} f\!\left(n\right) Limiting value of sequence
Sumnf ⁣(n)\sum_{n} f\!\left(n\right) Sum
Loglog ⁣(z)\log\!\left(z\right) Natural logarithm
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(ConstGamma, SequenceLimit(Sub(Sum(Div(1, k), Tuple(k, 1, n)), Log(n)), n, Infinity))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC