Assumptions:
TeX:
\int_{z}^{\infty} \frac{1}{{\left(a x + b\right)}^{c}} \, dx = \frac{1}{a \left(c - 1\right) {\left(a z + b\right)}^{c - 1}}
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; b \in \mathbb{R} \;\mathbin{\operatorname{and}}\; c \in \mathbb{R} \;\mathbin{\operatorname{and}}\; z \in \mathbb{R} \;\mathbin{\operatorname{and}}\; a > 0 \;\mathbin{\operatorname{and}}\; a z + b > 0 \;\mathbin{\operatorname{and}}\; c > 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Pow | Power | |
| Infinity | Positive infinity | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("463077"),
Formula(Equal(Integral(Div(1, Pow(Add(Mul(a, x), b), c)), For(x, z, Infinity)), Div(1, Mul(Mul(a, Sub(c, 1)), Pow(Add(Mul(a, z), b), Sub(c, 1)))))),
Variables(a, b, c, z),
Assumptions(And(Element(a, RR), Element(b, RR), Element(c, RR), Element(z, RR), Greater(a, 0), Greater(Add(Mul(a, z), b), 0), Greater(c, 1))))