Fungrim home page

Fungrim entry: 41631f

0ts1(θ3 ⁣(0,it2)1)dt=πs/2Γ ⁣(s2)ζ ⁣(s)\int_{0}^{\infty} {t}^{s - 1} \left(\theta_{3}\!\left(0 , i {t}^{2}\right) - 1\right) \, dt = {\pi}^{-s / 2} \Gamma\!\left(\frac{s}{2}\right) \zeta\!\left(s\right)
Assumptions:sCandRe ⁣(s)>2s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) > 2
TeX:
\int_{0}^{\infty} {t}^{s - 1} \left(\theta_{3}\!\left(0 , i {t}^{2}\right) - 1\right) \, dt = {\pi}^{-s / 2} \Gamma\!\left(\frac{s}{2}\right) \zeta\!\left(s\right)

s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) > 2
Definitions:
Fungrim symbol Notation Short description
Integralabf ⁣(x)dx\int_{a}^{b} f\!\left(x\right) \, dx Integral
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
ConstPiπ\pi The constant pi (3.14...)
GammaFunctionΓ ⁣(z)\Gamma\!\left(z\right) Gamma function
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
CCC\mathbb{C} Complex numbers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Source code for this entry:
Entry(ID("41631f"),
    Formula(Equal(Integral(Mul(Pow(t, Sub(s, 1)), Sub(JacobiTheta(3, 0, Mul(ConstI, Pow(t, 2))), 1)), Tuple(t, 0, Infinity)), Mul(Mul(Pow(ConstPi, Neg(Div(s, 2))), GammaFunction(Div(s, 2))), RiemannZeta(s)))),
    Variables(s),
    Assumptions(And(Element(s, CC), Greater(Re(s), 2))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 11:00:55.020619 UTC