Fungrim home page

Fungrim entry: 4099d2

limN1Nn#{T:T({1,2,,N})nandgcd(T)=1}=1ζ(n)\lim_{N \to \infty} \frac{1}{{N}^{n}} \# \left\{ T : T \in {\left(\{1, 2, \ldots, N\}\right)}^{n} \,\mathbin{\operatorname{and}}\, \gcd(T) = 1 \right\} = \frac{1}{\zeta(n)}
Assumptions:nZ2n \in \mathbb{Z}_{\ge 2}
TeX:
\lim_{N \to \infty} \frac{1}{{N}^{n}} \# \left\{ T : T \in {\left(\{1, 2, \ldots, N\}\right)}^{n} \,\mathbin{\operatorname{and}}\, \gcd(T) = 1 \right\} = \frac{1}{\zeta(n)}

n \in \mathbb{Z}_{\ge 2}
Definitions:
Fungrim symbol Notation Short description
SequenceLimitlimnaf(n)\lim_{n \to a} f(n) Limiting value of sequence
Powab{a}^{b} Power
Cardinality#S\# S Set cardinality
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
GCDgcd ⁣(a,b)\gcd\!\left(a, b\right) Greatest common divisor
Infinity\infty Positive infinity
RiemannZetaζ(s)\zeta(s) Riemann zeta function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("4099d2"),
    Formula(Equal(SequenceLimit(Mul(Div(1, Pow(N, n)), Cardinality(Set(T, For(T), And(Element(T, Pow(Range(1, N), n)), Equal(GCD(T), 1))))), For(N, Infinity)), Div(1, RiemannZeta(n)))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(2))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC