Fungrim home page

Fungrim entry: 3dd162

sin ⁣(x+yi)sinh ⁣(y)\left|\sin\!\left(x + y i\right)\right| \ge \sinh\!\left(\left|y\right|\right)
Assumptions:xRandyRx \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
TeX:
\left|\sin\!\left(x + y i\right)\right| \ge \sinh\!\left(\left|y\right|\right)

x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Sinsin(z)\sin(z) Sine
ConstIii Imaginary unit
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("3dd162"),
    Formula(GreaterEqual(Abs(Sin(Add(x, Mul(y, ConstI)))), Sinh(Abs(y)))),
    Variables(x, y),
    Assumptions(And(Element(x, RR), Element(y, RR))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC